Research report

Linking language and categorization: Evidence from aphasia

Gary Lupyan* and Daniel Mirman

Department of Psychology, University of Wisconsin-Madison, WI, United States
Moss Rehabilitation Research Institute, Elkins Park, PA, United States

A R T I C L E I N F O

Article history:
Received 17 August 2011
Reviewed 2 November 2011
Revised 15 February 2012
Accepted 20 June 2012
Action editor Roberto Cubelli
Published online 28 June 2012

Keywords:
Categorization
Language
Aphasia
Cognitive control
Language and thought

A B S T R A C T

In addition to its use in communication, language appears to have a variety of extra-communicative functions; disrupting language disrupts performance in seemingly non-linguistic tasks. Previous work has specifically linked linguistic impairments to categorization impairments. Here, we systematically tested this link by comparing categorization performance in a group of 12 participants with aphasia and 12 age- and education-matched control participants. Participants were asked to choose all of the objects that fit a specified criterion from sets of 20 pictured objects. The criterion was either “high-dimensional” (i.e., the objects shared many features, such as “farm animals”) or “low-dimensional” (i.e., the objects shared one or a few features, such as “things that are green”). Participants with aphasia were selectively impaired on low-dimensional categorization. This selective impairment was correlated with the severity of their naming impairment and not with the overall severity of their aphasia, semantic impairment, lesion size, or lesion location. These results indicate that linguistic impairment impacts categorization specifically when that categorization requires focusing attention and isolating individual features – a task that requires a larger degree of cognitive control than high-dimensional categorization. The results offer some support for the hypothesis that language supports cognitive functioning, particularly the ability to select task-relevant stimulus features.

¢ 2012 Elsevier Ltd. All rights reserved.

1. Introduction

To what degree does human cognition depend on language? Contrary to the view that language simply makes use of already existing concepts and cognitive faculties (Fodor, 1975; Li and Gleitman, 2002), there is mounting evidence that language is “potentially catalytic and transformative of cognition” (Bowerman and Choi, 2001). Indeed, not only does language appear to be instrumental in the learning of concepts during development (e.g., Balaban and Waxman, 1997; Casasola, 2005; Yoshida and Smith, 2005), but as initially hypothesized by William James (1890) categorization may continue to depend on language in adulthood (Lupyan et al., 2007; Lupyan, 2009).

If language affects cognition, then language deficits may produce cognitive deficits. This idea was discussed at length by the German neurologist Kurt Goldstein in the context of possible cognitive impairments concomitant with aphasia (1924, 1948). Rejecting the view prevalent at the time that aphasia was a disorder of general intelligence (Jackson, 1878), Goldstein argued that a loss of words did not bring with it a loss of thoughts, but an impairment of naming was also not circumscribed to language:

* Corresponding author. Department of Psychology, University of Wisconsin-Madison, 1202 W. Johnson St., Madison, WI 53706, United States.
E-mail address: lupyan@wisc.edu (G. Lupyan).
0010-9452/ see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cortex.2012.06.006
Thinking is not only expressed in language, but language influences in turn thought formation... Language is not only a means to communicate thinking; it is also a means to support it, to fixate it. Defect in language may thus damage thinking (Goldstein, 1948).

Indeed, following Goldstein’s initial observations (see Noppeney and Wallesch, 2000 for review), a number of researchers found that linguistic impairments were often correlated with difficulties in nonverbal sorting and categorization tasks. For example, individuals with aphasia were found to have trouble sorting objects by color—a task requiring selectively focusing on a specific dimension while overlooking differences in other dimensions such as shape (De Renzi and Spinnler, 1967). Cohen et al. likewise noted a specific impairment in encoding object features stressed by the experimenter (Cohen et al., 1981; see also Wayland and Taplin’s, 1982 discussion of patients with aphasia failing to organize feature set information, and Vignolo, 1999 for review).

In an effort to systematize the observed patterns of results, the so-called Konstanz group concluded that “... aphasics have a defect in the analytical isolation of single features of concepts” (Cohen et al., 1980, 1981), yet are equal to controls “when judgment can be based on global comparison” (Cohen et al., 1980). In their examination of the amnestic patient LEW, Davidoff and Roberson reached a similar conclusion, arguing that when a grouping task requires attention to one category while abstracting over others, LEW is “without names to assist the categorical solution. Where patients such as LEW can name, they can categorize.” (Davidoff and Roberson, 2004).

In a study especially relevant to the present work, Semenza et al. (1992) measured the ability of a varied group of patients with aphasia to select the stronger of two associates given a task. The patients were asked to choose the better of two alternatives related to the target (e.g., ring) in a taxonomic relationship (necklace vs belt) and in a thematic relationship (finger vs wedding). Although the patient group performed worse than the control group on both trial types, greater impairments in confrontation naming predicted poorer performance specifically for the taxonomic trials.

Although these studies suggest an association between linguistic and categorization impairments, no consensus could be reached, owing to wide variety of methods of diagnosing and testing the patients (cf. Caramazza et al., 1982; De Renzi and Spinnler, 1967; Hjelmquist, 1989; Semenza et al., 1992; Wayland and Taplin, 1982; see Vignolo, 1999 for discussion). For example, it is unclear to what degree the deficits observed by Semenza et al. (1992) were due to failures of the categorization process versus disrupted semantic knowledge (cf. Caramazza et al., 1982) and it is unclear whether the studies of the patient LEW (Roberson et al., 1999; Davidoff and Roberson, 2004) generalize to a broader population.

Here, we report a systematic investigation of categorization deficits in aphasia by comparing performance of participants with aphasia to age- and education-matched control participants on a task that required selecting pictures of common objects that matched a particular criterion. For example, one criterion asked participants to click on all the farm animals; another asked to choose all “things that are green” (see Appendix for a full listing).

One reason why naming impairments may lead to categorization impairments is that language is inherently categorical (i.e., words denote categories) and as such helps to dynamically cohere entities that are otherwise too distinct (Lupyan, 2012a). A label like “red” for example may facilitate forming a category of red things independently of their semantic categories. Indeed, in a series of studies investigating the impact of aphasia on detecting commonalities between objects, Koemeda-Lutz et al. found that patients with aphasia were impaired in detecting common properties of sequentially shown objects. The authors observed that “red cherries and red bricks may be judged to be alike mainly via what is concentrated and coined in the verbal label ‘red’” (Koemeda-Lutz et al., 1987).

Our main prediction was that individuals with aphasia would be selectively impaired on trials that required categorizing according to a specific dimension, e.g., choosing all the green items while abstracting over shape, semantic class, etc. We call such trials low-dimensional. We reasoned that because such categories cohere on the basis of one or a small number of dimensions, they may require more on-line support from language. Language impairments, particularly naming impairments, may therefore lead to a failure in forming the task-relevant category representation resulting in a lower rate of correct target selection. In contrast, grouping together items that cohere on numerous dimensions such as a pillow and a blanket (high-dimensional trials) does not require the same level of selective representation/cognitive control and can be accomplished by relying on broader inter-item associations. Performance on these trials was predicted to be less affected by linguistic impairments such as naming.¹ So, although grouping together a cow, a pig, and a chicken as instances of farm animals depends on semantic knowledge of what animals are typically found on farms, forming this type of classification on our account does not require a high level of active selection or cognitive control and can be accomplished by activating a broad semantic representation of things-associated-with-farms (see Lupyan et al., 2012 for discussion). Note that our predictions concern the possible contributions of language in constructing task-relevant category representations on-line. So, although it is true that semantic impairments observed particularly in Wernicke-type aphasias manifest in disordered conceptual organization (Whitehouse et al., 1978; Caramazza et al., 1982), our present goal is to test the hypothesis that language may be implicated in constructing certain types of categories (low-dimensional) controlling for any concomitant semantic deficits.

¹ Our notion of category dimensionality is similar to Sloutsky’s distinction between sparse categories—those cohering on only a small number of dimensions, and dense categories—those in which many of the dimensions covary (Sloutsky, 2010). It is also related to the distinction of rule-based versus information-integration categories (e.g., Ashby et al., 1999; Waldron and Ashby, 2001). These authors have argued that learning low-dimensional/sparse/rule-based categories appears to depend more on language than learning high-dimensional/dense/similarity-based categories.
2. Methods

2.1. Participants

We recruited 12 participants with left unilateral CVA lesions who had been acutely diagnosed with aphasia and 12 age- and education-matched controls from the Moss Neuro-Cognitive Rehabilitation Research Registry (Schwartz et al., 2005). Because we were primarily interested in the effect of naming impairments on categorization, we selected individuals with anomic aphasia. The characteristics of this group are shown in Table 1. Naming impairments were assessed by using the Philadelphia Naming Test (Roach et al., 1996) in which patients see 175 pictures of common objects and are given 30 sec to name each one. General semantic impairments were assessed by using the American version of the Camels and Cactus test (Bozeat et al., 2000) in which patients see 64 pictures and for each, have to select among four pictorial choices, the one that is most strongly associated with the item, e.g., matching a picture of an orange to a glass of orange juice. Structural lesion images were acquired by MRI or CT. For MRI scans, lesions were segmented manually, registered to a common template (Montreal Neurological Institute space “Colin27” volume: Holmes et al., 1998), and inspected by an experienced neurologist. For CT images, an experienced neurologist drew lesion maps directly onto the Colin27 volume. For more details, see previous voxel-based lesion-symptom mapping studies using the same procedure (Schwartz et al., 2009; Walker et al., 2011).

2.2. Procedure

Participants were tested individually and told that they would be seeing groups of pictures along with a category or property description, and that their task was to choose all of the pictures that matched the description by clicking on them by using a mouse or for some patients a touchscreen. Each trial began with a prompt informing the participants of the category criterion they should use. Participants then clicked the mouse to reveal a four-row by five-column array of color pictures on a white background. The criterion, e.g., THINGS THAT ARE GREEN, was prominently displayed above the pictures throughout the trial. A sample trial is shown in Fig. 1. Participants could select as many or as few pictures as they deemed appropriate. Clicking on an object caused a gray frame to appear around it marking it as selected. Clicking it again un-selected the object allowing participants to change their mind. There was no time limit; the trial was terminated when the participant clicked a large “Done” button at the bottom of the screen. Subjects completed two blocks of 40 trials.

2.3. Materials

The targets and distractors were drawn from 260 color drawings of common objects (Rossion and Pourtois, 2004). These stimuli were used to construct 34 separate categories, 17 low-dimensional categories and 17 high-dimensional categories. The low-dimensional categories identified targets that cohered on the basis of one or few dimensions. For example, the targets in a THINGS THAT ARE BLUE trial could vary in shape, size, and semantic category. The one thing they had in common was that they were all blue. The high-dimensional categories identified targets that cohered on multiple dimensions, that is, were related to each other in multiple ways. High-dimensional trials included both role-governed/ad-hoc categories such as NON-FOOD THINGS FOUND IN A KITCHEN, as well as “common” categories such as FRUIT. What distinguished both of these from low-dimensional categories was the absence of any single dimension on which targets could be distinguished from non-targets. See the Appendix for a full list of trials.

For each category we designated four pictures as targets (though participants were free to select however many targets they wished). For example the targets of the BODY PARTS category were hand, leg, toe, and finger. An item could serve as a target for only a single category, despite some items being sensible targets in more than one category. Items could appear as distractors on multiple trials.

Pictures serving as targets in the two trial types (low-dimensional vs high-dimensional) did not differ in naming reaction times (RTs), naming accuracy, name agreement, imageability, or familiarity, all Fs < 1 (see Rossion and Pourtois, 2004 for definitions of these measures). There was a reliable difference in visual complexity with targets in the low-dimensional trials having lower complexity than targets in the high-dimensional trials, F(1,21) = 15.29, p < .0005 [this effect was less reliable when we examined the average visual complexity of the target set for each category, F(1,32) = 3.73, p = .062]. Results of additional norming studies can be found in Lupyan et al. (2012).

3. Results

The main dependent variable was the proportion of targets chosen on each trial. Trial-type (low-dimensional vs high-dimensional) and group (aphasic vs control) were entered into an ANOVA as within- and between-subject factors, respectively. Participants with aphasia had only marginally lower target-selection rates compared to control participants, F(1,22) = 3.23, p = .086. Performance in both groups was poorer for the low-dimensional compared to the high-dimensional trials, F(1,22) = 34.06, p < .0005, and there was a reliable category-type by group interaction, F(1,22) = 5.22, p = .032. The two groups had equivalent performance on the high-dimensional type trials, F < 1, but participants with aphasia had a significantly lower rate of target-selection than controls on the low-dimensional type trials, F(1,22) = 5.18, p = .03 (Fig. 2). We also examined the time participants took to select the targets (including only the correct responses). Participants
with aphasia had significantly longer median per-click RTs (M = 3029 msec) than controls (M = 1696 msec), t(1,22) = 15.28, p < .001. More importantly, we found a significant category-type by group interaction, t(1,22) = 4.90, p = .038: participants with aphasia had longer RTs when categorizing the low-dimensional compared to high-dimensional trials, whereas control participants did not (Fig. 2).

We also analyzed selections of non-target items (false alarms − FA). The overall FA rate of participants with aphasia and control participants was very similar, MFA = 10% of final selections, F < 1. FAs were significantly higher for low-dimensional than high-dimensional trials in both groups, F(1,22) = 56.70, p < .0005, with no reliable category-type by group interaction, F(1,22) = 2.08, p = .16.

Next, we examined which specific aspects of the aphasic profile (Table 1) were associated with categorization impairments. If the ability to select task-relevant dimensions is associated with linguistic impairments such as each individual’s performance on the Philadelphia Naming Test, then it should predict performance on the low-dimensional trials, more than high-dimensional trials. We tested this prediction using a linear mixed effects model that included subjects and each category (e.g., green things) as random factors, thus combining subject- and item-based analyses (Baayen et al., 2008). Lower naming performance reliably predicted lower overall performance, t = 2.56, \(\chi^2(1) = 5.97, p = .015 \). Importantly, the effect of naming interacted significantly with trial-type (low- vs high-dimensional), t = 2.43, \(\chi^2(1) = 5.94, p = .015 \).

Analyzing the low- and high-dimensional trials separately revealed that naming reliably predicted performance on the low-dimensional trials, \(t = 2.75, \chi^2(1) = 6.45, p = .011 \), but not high-dimensional trials, \(t = 1.59, \chi^2(1) = 2.60, p = .11 \). Semantics, assessed by the Camels and Cactus test, predicted overall performance only marginally, \(t = 1.645, \chi^2(1) = 2.77, p = .09 \). Examining the low- and high-dimensional trials separately revealed that semantic impairments were associated with lower performance on the high-dimensional trials, \(t = 1.97, \chi^2(1) = 3.86, p = .049 \), but not low-dimensional trials, \(t = 1.19, \chi^2(1) = 1.50, p = .22 \), though the trial-type by semantics interaction was not significant. Controlling for naming, semantics no longer predicted target-selection performance.4 FA rates were not predicted by naming, t < 1, and were only marginally predicted by semantic impairments, \(t = 1.64, \chi^2(1) = 2.78, p = .096 \). Controlling for naming performance however, semantics became a highly reliable predictor of FAs, \(t = 2.54, \chi^2(1) = 6.38, p = .012 \) indicating that general semantic impairments led to a greater likelihood of selecting non-targets.

Finally, we examined whether the association between naming and categorization impairments depended on the general location of the lesion. As we discuss below, finding that naming impairments continue to predict categorization impairments independently of lesion location is consistent with the possibility that the categorization impairment stems from the functional naming impairment. Indeed, naming continued to predict categorization performance (proportion of targets selected) at the .01 level when controlling for overall

Table 1 – Patient data.

<table>
<thead>
<tr>
<th>Participant ID</th>
<th>Sex</th>
<th>Age</th>
<th>Education (yrs)</th>
<th>Aphasia subtype</th>
<th>WAB</th>
<th>PNT</th>
<th>CCT</th>
<th>Low dim</th>
<th>High dim</th>
<th>Lesion volume (cm³)</th>
<th>General location of lesion</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>F</td>
<td>71</td>
<td>12</td>
<td>Anomic</td>
<td>89.8</td>
<td>87</td>
<td>88</td>
<td>.738</td>
<td>.894</td>
<td>99.7</td>
<td>Fronto-temporal</td>
</tr>
<tr>
<td>206</td>
<td>M</td>
<td>56</td>
<td>16</td>
<td>Anomic</td>
<td>92.3</td>
<td>89</td>
<td>81</td>
<td>.820</td>
<td>.865</td>
<td>103.9</td>
<td>Fronto-temporal</td>
</tr>
<tr>
<td>904</td>
<td>F</td>
<td>63</td>
<td>12</td>
<td>Anomic</td>
<td>88.5</td>
<td>80</td>
<td>86</td>
<td>.796</td>
<td>.956</td>
<td>70.9</td>
<td>Fronto-parietal</td>
</tr>
<tr>
<td>419</td>
<td>M</td>
<td>41</td>
<td>12</td>
<td>Anomic</td>
<td>91.5</td>
<td>91</td>
<td>80</td>
<td>.838</td>
<td>.951</td>
<td>51.9</td>
<td>Fronto-temporal, Putamen</td>
</tr>
<tr>
<td>1088</td>
<td>M</td>
<td>46</td>
<td>18</td>
<td>Anomic</td>
<td>78.8</td>
<td>56</td>
<td>55</td>
<td>.913</td>
<td>.890</td>
<td>89.1</td>
<td>Temporal</td>
</tr>
<tr>
<td>1380</td>
<td>F</td>
<td>58</td>
<td>12</td>
<td>Conduction</td>
<td>55.6</td>
<td>7</td>
<td>70</td>
<td>.654</td>
<td>.863</td>
<td>50.5</td>
<td>Temporal, Caudate, Putamen</td>
</tr>
<tr>
<td>1392</td>
<td>M</td>
<td>65</td>
<td>19</td>
<td>Anomic</td>
<td>90.2</td>
<td>72</td>
<td>78</td>
<td>.823</td>
<td>.925</td>
<td>84.9</td>
<td>Fronto-temporal</td>
</tr>
<tr>
<td>1620</td>
<td>M</td>
<td>65</td>
<td>12</td>
<td>Anomic</td>
<td>92.9</td>
<td>78</td>
<td>77</td>
<td>.774</td>
<td>.888</td>
<td>5.4</td>
<td>Subcortical frontal</td>
</tr>
<tr>
<td>1764</td>
<td>F</td>
<td>39</td>
<td>15</td>
<td>Anomic</td>
<td>92.2</td>
<td>88</td>
<td>92</td>
<td>.890</td>
<td>.903</td>
<td>41.9</td>
<td>Fronto-temporal, Putamen</td>
</tr>
<tr>
<td>1780</td>
<td>M</td>
<td>60</td>
<td>14</td>
<td>Anomic</td>
<td>83.7</td>
<td>86</td>
<td>63</td>
<td>.758</td>
<td>.869</td>
<td>37.0</td>
<td>Fronto-temporal</td>
</tr>
<tr>
<td>4343</td>
<td>F</td>
<td>72</td>
<td>22</td>
<td>Anomic</td>
<td>88.1</td>
<td>95</td>
<td>88</td>
<td>.921</td>
<td>.950</td>
<td>41.0</td>
<td>Fronto-temporal</td>
</tr>
<tr>
<td>44</td>
<td>F</td>
<td>58</td>
<td>12</td>
<td>Anomic</td>
<td>95.2</td>
<td>97</td>
<td>89</td>
<td>.866</td>
<td>.964</td>
<td>78.5</td>
<td>Parietal-temporal</td>
</tr>
</tbody>
</table>

Note: WAB = Aphasia Quotient from the Western Aphasia Battery. PNT = Philadelphia Naming Test. Control performance: M = 97%, SD = 1.8% (n = 20, Schwartz et al., 2009).

CCT = Camels and Cactus Test of semantics. Control performance: M = 89%, SD = 11.4% (Bozeat et al., 2000: British participants); M = 89.8%, SD = 5.6% (Philadelphia participants n = 20; unpublished data collected at Moss Rehabilitation Research Institute).

Low Dim, High Dim = Percentage of targets selected.

a The numbers combine all error types. The overall naming rate is the best predictor of performance, as described in the text. Categorization performance was not selectively correlated with any specific type of naming errors.
lesion size, and did not interact with the lesion site in any way. For example, naming predicted categorization performance regardless of whether the lesion extended into the left prefrontal cortex, $t = 2.62, \chi^2(2) = 7.21, p = .027$. Naming also remained a reliable predictor of categorization when we controlled for overall aphasia severity using the Western Aphasia Battery quotient.

4. General discussion

If language contributes to the human ability to represent items in terms of conceptual classes, naming impairments may lead to categorization impairments. Indeed, individuals with aphasia performed more poorly than matched control participants on a categorization task, showing poorer performance specifically on trials requiring grouping of objects that share only one or a few dimensions. The degree of categorization impairment was predicted by a behavioral linguistic predictor—naming performance—but independent of the location of the lesion that presumably caused the naming impairment. General semantic impairments predicted the likelihood of choosing non-targets and predicted lower target-selection rates on high-dimensional trials, consistent with the hypothesis that this latter type of categorization is more sensitive to semantic (i.e., real-world knowledge) deficits (cf. Semenza et al., 1992).

This result is consistent with the hypothesis that language reifies categories. Categories that have strong associations between their members (what we call here high-dimensional categories) may cohere independently of language. Because dissolution of real-world knowledge (measured by the Camels and Cactus test) disrupts these associations, semantic impairments tend to track impairments in high-dimensional categorization. In contrast, categories held together by one or a small number of dimensions, may require more on-line support from language. For example, the ability to selectively attend to a objects having a particular color—classifying objects into a category of red things—may be facilitated by naming insofar as words such as “red” help to group together objects that do not have pre-existing semantic associations and which differ substantially in surface appearance (e.g., a cherry and a brick) (e.g., Lupyan, 2008).

We have shown an association between naming and categorization, particularly for categorization trials that require greater selection of specific task-relevant dimensions. Such trials arguably place greater demands on cognitive control (e.g., Snyder et al., 2007; Novick et al., 2010), requiring subjects to group together items that only cohere on one or a few properties (e.g., a cherry and a brick have nothing in common except their color). An alternative to the claim that low-dimensional categorization is affected by naming impairments per se is that both the categorization and the naming impairments are caused by damage to cognitive control mechanisms. Indeed, the left-inferior frontal gyrus (LIFG, a region comprising Broca’s Area), is known to be involved in tasks requiring cognitive control (e.g., Thompson-Schill et al., 1997; Kan and Thompson-Schill, 2004) and deficits in cognitive control can lead to naming impairments (Jeffries

Fig. 1 – A sample low-dimensional categorization trial.
Insofar as naming itself is an act of categorization (to name is to categorize), it is not surprising that categorization deficits stemming from a failure of cognitive control can lead to naming impairments. However, in our sample, naming performance predicted categorization performance entirely irrespective of lesion site, e.g., the association between naming and categorization was observed for patients who had no lesions of the LIFG. The observation that naming predicted performance on the low-dimensional categorization trials controlling for lesion site and overall aphasic severity, suggests a bidirectional causal link between naming and categorization, perhaps modulated by cognitive control.

A causal link between language and categorization is also supported by studies that have investigated cognitive functions of language by attempting to experimentally up- or down-regulate language and observe the effect of this manipulation on cognitive performance. For example, down-regulating language by using verbal interference tasks impairs performance on tasks requiring high levels of cognitive control such as task switching (Dunbar and Sussman, 1995; Baddeley et al., 2001; Emerson and Miyake, 2003; Miyake et al., 2004; Cragg and Nation, 2010). For example, Emerson and Miyake (2003) showed an increase in switching costs between simple tasks (single digit addition and subtraction problems) when participants repeated “the the...” during the task as though this prevented them from using (covert) language to help guide them from one task to the next. More relevant to the present work, Lupyan (2009) showed that a verbal rehearsal task selectively impaired subjects’ ability to focus on specific perceptual dimensions such as size or color, leading to a performance profile similar to that shown by the pure anomic patient LEW on an almost identical categorization task (Experiment 7, Davidoff and Roberson, 2004).

The idea that verbal category labels enhance categorical representations is also supported by studies exploring the effects of language on visual processing. For example, the ability to visually attend to all the objects in a given category, such as chairs, is enhanced immediately after hearing the basic-level term (i.e., the word “chair”) compared to knowing exactly what to attend, but not hearing the word (Lupyan and Spivey, 2010). Similarly, Lupyan and Swingley (2012) showed that an “up-regulation” of language achieved by having participants talk to themselves during a visual search task (e.g., to actually say the word “chair”) facilitated performance compared to just reading the word (see Lupyan, 2012b, for discussion).

In sum, our results show that acquired language impairments are linked to deficits on a categorization task that did not require making any verbal responses. The link between categorization and naming impairments was obtained regardless of the lesion that is presumably responsible for the naming impairments. These results add to the claim that language supports extra-communicative cognitive functions (Clark, 1998; see also Baldo et al., 2010), and that it may reify conceptual categories.

Acknowledgments

This research was supported by the Moss Rehabilitation Research Institute and by an IGERT training grant to G.L. We thank Rachel Jacobson and Kristen Graziano for their help with data collection and Alli Shapiro for help with stimulus preparation.

Supplementary data

Supplementary data associated with this article can be found, in the on-line version, at http://dx.doi.org/10.1016/j.cortex.2012.06.006.

Fig. 2 – (A) Target-selection performance (hit rates) for the two participant groups. (B) The difference in hit rates between the low-dimensional and high-dimensional trials. (C) The difference in mean RTs of correct selections for the low-dimensional and high-dimensional trials. Error bars show ± 1 SE of the mean difference between the high- and low-dimensional trials.

5 A productive line of future inquiry may be to employ patient samples larger than the present one (e.g., Kemmerer et al., 2012) and examine whether the patterns of associations between naming impairments, task performance and lesion sites, can be additionally explained by taking into account the degree of cognitive control/selective attention called on by the task.

